Моделирование работы модуля «Поиск оптимального маршрута нескольких БЛА»

Информация » Разработка алгоритмов поиска оптимального маршрута для БЛА при наблюдении им подвижных наземных объектов » Моделирование работы модуля «Поиск оптимального маршрута нескольких БЛА»

Страница 2

Модуль нахождения оптимального маршрута для одного БЛА

Для выбранной итерации были составлены следующие оптимальные маршруты:

Первый БЛА: 1-й и 5-й – 3-й – 6-й объекты;

Второй БЛА: 7-й – 2-й – 4-й объекты.

Следует заметить, что при пролете над пятым объектом в поле видимости камеры попал первый объект, поэтому был обработан вместе с пятым. раздел общих долгов и прав требований, особенности раздела общих долгов супругов

Время работы модуля составило 31,7279 секунды.

Модуль определения минимального радиуса разворота.

Для текущих значений скорости БЛА и скорости ветра был рассчитан минимальный радиус разворота Rmin = 70 м.

Время работы модуля составило 0.000004 секунды.

Модуль запоминания оптимального маршрута

Маршрут, просмотренный на текущей итерации, сохранен для дальнейшей обработки.

Время работы модуля составило 0,0008 секунды.

Результаты работы системы

В результате работы системы было выбрано оптимальное распределение объектов и составлены оптимальные маршруты их облета двумя БЛА. На рисунке 1.5.3 изображены выбранные маршруты, а также показаны начальные пункты движения БЛА (они изображены в виде самолетов), конечные пункты движения первого и второго БЛА – К1 и К2 соответственно, начальные положения и направление движения объектов (они изображены в виде черных окружностей), а также точки «обслуживания» объектов (они изображены синими точками). Красные непрерывные линии показывают траектории движения БЛА по оптимальным маршрутам. Время работы всей системы составило 172.4834 секунды.

Таким образом, результаты моделирования показывают, что разработанная программа является работоспособной и маршруты, рассчитываемые с помощью нее, являются оптимальными. Пример дерева, по которому находится минимальный маршрут, приведен на рисунке 1.5.4. Рядом с каждой вершиной выводится время, необходимое для встречи с данным объектом, если БЛА будет следовать по маршруту, соответствующему исследуемой ветви дерева. Красным цветом указана ветвь дерева, соответствующая оптимальному маршруту.

Рисунок 1.5.3 Результат выполнения модуля «Поиск оптимального маршрута для нескольких БЛА»

Рисунок 1.5.4 Дерево перебора всех вариантов облета для первого БЛА (соответствие значений, указанных на вершине номерам объектов: «1» – 5-й объект, «2» – 6-й объект, «3» – 1-й объект, «4» – 3-й объект)

Моделирование работы системы с использованием нейронной сети и анализ результатов

Смоделируем работу созданной нейронной сети в среде Matlab с использованием встроенной утилиты nntool, предназначенной для работы с нейронными сетями.

При подготовке обучающих данных для данной нейронной сети учтем, что они должны быть нормированы для того, чтобы все параметры, подаваемые на вход нейронной сети, имели равный вес в процессе принятия решения. Также следует учесть тот факт, что подготовка полной обучающей выборки для данной нейронной сети без использования вычислительных сетей и мощных вычислительных станций займет довольно продолжительное время, поэтому для проверки работы нейронной сети учтем некоторые допущения:

скорости движения БЛА и объектов постоянны и заданы заранее;

объекты движутся в том же направлении, что и БЛА;

количество объектов равно трем.

Таким образом, сгенерируем обучающую выборку для данной нейронной сети, изменяя нормированные значения относительных координат в пределах от 0 до 1 с шагом 0,1.

В ходе разработки и моделирования работы данной нейронной сети количество нейронов в скрытом слое было выбрано равным 35. Таким образом, данная нейронная сеть имеет структуру 14–35–3.

Моделирование данной нейронной сети производилось на ПЭВМ со следующими характеристиками:

Тактовая частота процессора: 2 ГГц;

Количество ядер процессора: 1;

Объем памяти: 1,5 Гб.

Процесс генерации данной обучающей выборки занял 8 часов.

Процесс обучения нейронной сети закончился с ошибкой, равной 10-2, что является хорошим результатом для данной нейронной сети. Промоделируем теперь работу данной нейронной сети и сравним ее результаты с результатами, выдаваемыми исходным алгоритмом.

Страницы: 1 2 3 4

Похожие статьи:

Оптимальная структура спутниковых систем местоопределения автотранспорта
В настоящее время у многих ведомств и организаций возникает необходимость оперативного слежения за местоположением и состоянием подвижных объектов, а также передачи на них оперативной информации. Практически все заинтересованные диспетчерские службы в настоящее время имеют в своем распоряжении те и ...

Экологические требования ЕВРО к дизельным топливам
Наименование характеристик дизельного топлива Значение характеристик дизельного топлива ЕВРО 2 1996 ЕВРО 3 2000 ЕВРО 4 2005 ЕВРО 5 2009 Цетановое число, минимум Цетановый индекс, минимум Содержание серы, мах: % мг/кг (ррм) Содержание полиароматических углеводородов, %, мах 46 0,050 500 51 46 0,035 ...

Рама тележки
Рама тележки тепловоза бесчелюстного типа, сварно-литой конструкции состоит из двух боковин, трех одинаковых междурамных креплений , концевого крепления и шкворневой балки. Боковина— сварная, коробчатого сечения размером 240x270 мм. Толщина верхнего листа 14 мм, нижнего 22 мм и боковых листов 10 мм ...

Навигация

Copyright © 2019 - All Rights Reserved - www.localtransport.ru