Профилирование профиля прямого хода

Информация » Расчет топливной аппаратуры дизельного двигателя » Профилирование профиля прямого хода

Страница 1

Профилирование профиля прямого хода выполняется в два этапа:

1-й этап – определяю максимально возможную скорость плунжера на прямом ходе Сmax , значение которой определяет скорость плунжера во время впрыскивания, а значит интенсивность впрыскивания;

2-й этап – определяю текущее значение хода S, скорости С, ускорения

W плунжера и радиусов кривизны профиля R.

Этап 1 – определение Сmax

м/с;

где nк – частота вращения кулачка, мин -1 ;

Sаг – активный геометрический ход плунжера, м;

мм;

QT – цикловая подача топлива, мм3;

η = 0.6 – коэффициент подачи топлива;

мм2;

где βаг – продолжительность активного геометрического хода плунжера, 0 ПКВ.

Βвп - продолжительность впрыскивания топлива, 0 ПКВ.

Cmax = 1.3·Cm = 1.3·2.099 = 2.7283 м/с;

Определяю ускорение плунжера на первом участке профиля, м/с2:

м/с2 ;

где Хн – кинематический коэффициент в начальной точке профиля, м ;

Хн = R0 + ρ = 50 + 30 = 80 мм;

R0 – радиус начальной окружности, мм;

ωк - угловая скорость кулачка , с-1 ;

c-1;

ρ – радиус ролика толкателя, м;

Rн – радиус кривизны в начальной точке профиля, м ;

Вычисляю ход плунжера на первом участке профиля, м;

м;

Вычисляю ход плунжера на втором участке профиля, м ;

S2 = Sп – S1 = 0.028-1.53293·10-2 = 0.0126707 м ;

Вычисляю ускорение плунжера на втором участке профиля, м/с2 и присваиваю знак минус :

c-1;

Максимальное значение угла давления :

где Хс – кинематический коэффициент в конце первого участка профиля, м:

Xc = R0 + ρ + S1 = 0.05 + 0.03 + 1.53293·10-2 = 0.096 м;

Вычисляю коэффициент превышения силой пружины плунжера силы инерции возвратно-поступательно движущихся деталей привода плунжера :

;

где f0 – предварительная затяжка пружины плунжера , м ;

Kж – ее жесткость, Н/м;

Вычисляю радиус кривизны в конечной точке профиля, м :

м ;

где Хк – кинематический коэффициент в конечной точке профиля, м;

XK = R0 + ρ + S п = 0,05 + 0,03 + 0,028 = 0,109 м ;

Определяю по формуле Герца предельно допустимый радиус кривизны в конечной точке профиля, м;

м ;

где b = 0.03, ρ = 0,03, несущая ширина и радиус ролика толкателя, м;

E ,σд - модуль упругости материала кулачка, допустимые контактные напряжения на поверхностях ролика и толкателя, МПа ;

N – cила, передаваемая роликом на кулачек , МН ;

N = PT + PП = 5,668 ·10-5 + 1,744·10-3 = 1,801·10-3 ;

где PТ - сила от давления топлива при положении плунжера в ВМТ , МН;

PТ = РЛО · FП = 0,2 · 2,834·10-4 = 5,668·10-5 МН;

PП - сила пружины при положении плунжера в ВМТ , МН;

PП = МН ;

Вычисляю предельно допустимое давление топлива в надплунжерном объеме в начале второго участка, при этом силой пружины и силой инерции, направленных навстречу и близких по величине, пренебрегаю:

МПа;

мм

Угол выступа кулачка , град;

Угол профиля прямого хода, град;

;

где β1 ,β2 – углы первого и второго участка профиля прямого хода, град;

;

;

Этап 2 – определение текущих значений S, C, R, δ, PT

Профилирование первого участка профиля прямого хода:

Текущее значение хода плунжера, мм:

S = K3 · β2 ;

где ;

S = 1.5 · 10-2 · β2 ;

Текущее значение скорости плунжера м/с :

C = K4 · β ;

где ;

Подставляя в формулы текущее значение β, вычисляю значения S и С. Результаты записываю в таблицу.

Текущее значение радиуса кривизны в любой точке профиля, м:

Страницы: 1 2

Похожие статьи:

Выбор оптимальных параметров системы управления высотой полёта
Автоматическая стабилизация высоты полета производится в тех случаях, когда необходимо выдержать горизонтальный режим полета на заданной высоте. При этом за исключением полета на малых высотах, обычно осуществляется стабилизация барометрической высоты на уровне, соответствующем заданному статическо ...

Проблемы железнодорожного транспорта
Железные дороги являются ведущим звеном транспортной системы России, важнейшим элементом производственной инфраструктуры. Но, к сожалению, приток инвестиции в данный вид транспорта заметно уменьшился, особенно в 1991–1998 гг., когда они сократились более чем в 4 раза. Результатом снижения объема ин ...

Рама тележки
Рама тележки тепловоза бесчелюстного типа, сварно-литой конструкции состоит из двух боковин, трех одинаковых междурамных креплений , концевого крепления и шкворневой балки. Боковина— сварная, коробчатого сечения размером 240x270 мм. Толщина верхнего листа 14 мм, нижнего 22 мм и боковых листов 10 мм ...

Навигация

Copyright © 2019 - All Rights Reserved - www.localtransport.ru