Технико-экономическая эффективность применения автоматической наплавки изношенных деталей определяется с учетом имеющихся рекомендаций.
Снижение трудоемкости наплавки:
(7.1)
где Тб, Тс − штучное время наплавки по базовому (автоматическая под флюсом) и сопоставимому (автоматическая вибродуговая) вариантам, ч.
Повышение производительности труда
(7.2)
Снижение себестоимости наплавки:
(7.3)
или
(7.4)
где Сб, Сс − себестоимость наплавки детали под флюсом и вибродуговой, руб.
Годовая экономия наплавки на выполненный объем работы, получаемая при использовании сравниваемых технологических процессов, рассчитывается по формуле:
(7.5)
где П − годовая программа ремонта, П = 4000 шт.
Срок окупаемости дополнительных капитальных вложений:
(7.6)
где Кс, Кб − капитальные затраты, необходимые для проведения мероприятий соответственно по сопоставимому и базовому варианту, руб.;
Эс − годовая экономия, руб.
Полученное при расчетах значение Тр сравнивается с нормативным. Приемлемыми являются варианты, для которых значения Тр окажутся лучше нормативных, а именно:
(7.7)
Для предприятий железнодорожного транспорта нормативное значение срока окупаемости Тн= 6,7 года.
Годовой экономический эффект, получаемый в результате разработки и внедрения технологии автоматической наплавки, представляет собой разность годовых приведенных затрат по базовому и сопоставляемому вариантам:
(7.8)
где Ен − нормативный коэффициент эффективности капитальных вложений,
Ен = 0,1–0,15.
Основные показатели технико-экономической эффективности применения автоматической вибродуговой наплавки по сравнению с автоматической наплавкой под флюсом сводятся в таблицу 1.
Таблица 1 − Основные показатели технико-экономической эффективности
Показатели |
Автоматическая наплавка |
Снижение трудоёмкости наплавки Т, ч |
0,66 |
Повышение производительности труда Птр, % |
51,56 |
Снижение себестоимости наплавки одного остова С, руб. |
265,63 |
Скорость окупаемости внедрения технологии Тр, год |
0,005 |
Годовая экономическая эффективность Э, руб. |
234,37 |
Выполнив все необходимые расчёты, можно приступить к анализу полученных результатов.
Похожие статьи:
Расчет обмотки якоря
Тип обмотки якоря выбирают в зависимости от часового тока двигателя , который равен , А, (4.1) где - КПД на валу; определяем его по кривой (рис. 4.1). Рис. 4.1. Определение КПД на валу тягового двигателя Если ток двигателя , то подразделять его на число параллельных ветвей большее, чем 2а=2, не име ...
Математическая модель замкнутой системы регулирования
Сформируем математическое описание замкнутой системы автоматического регулирования частоты вращения вала главного судового дизельного двигателя ,которая представлена функциональной схемой и выглядит следующим образом: - объект регулирования: (42) - редукторный привод регулятора (43) - регулятор: (4 ...
Определение перемещений фундаментов и стенок
надстройки
В данном разделе определяются перемещения фундаментов от действия нагрузки Р2. Фундаменты перемещаясь «тянут» в свою очередь надстройку, поэтому также определяются перемещения стенок надстройки. Результаты расчетов приведены в таблицах 4,5, (обозначения в таблицах: н – надстройка, ф – фундамент, Ux ...